
INFLUENCE OF FLOW ANGULARITIES IN A HYPERSONIC
RAMJET DIFFUSER ON THE FORMATION OF THE
SHOCK-WAVE STRUCTURE OF THE REAL GAS FLOW
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We have investigated the shock-wave structures arising at the entrance to the engine section of hypersonic
aircraft and the influence on the process of their formation of the flow angularity after oblique shock fronts
incident inside the diffuser with a different type of interaction (Mach or regular). To take into account the
real properties of the atmosphere, we used the effective adiabatic exponent method permitting determination
of the topology of shock-wave patterns and calculation of the gas- and thermodynamic parameters in various
flow zones between the shock fronts in a wide range of diagnostic variables for the Earth’s atmosphere.

Introduction. The main goal of this paper is to investigate such an interaction of shock waves, e.g., in air
intakes and nozzles of engines of hypersonic aircraft in certain ranges of flight conditions, where dualism of the solu-
tion takes place — the possibility of existence at the same diagnostic variables of the problem of shock-wave patterns
of reflection of two different types: regular or Mach reflection (Neumann paradox). The necessity for the hypersonic
ramjet engine (HRE) to operate under designed conditions calls for the development of a system for correcting the en-
trance of the flow into the diffuser. As a rule, such systems are mechanical and are connected with the possibility of
varying the entrance angles. The idea of "thermal correction" of the diffuser investigated in [1] also seems to be very
promising. It presupposes energy supply to the incoming flow in front of the diffuser. It should be noted, however,
that such a correction (along with mechanical correction, though) cannot guarantee the absence of nondesigned regimes
in all cases, especially in aircraft maneuvering. One nondesigned regime is the regime of an oblique compression
shock incident inside the diffuser and its reflection, which can cause flow separation and the formation of stagnation
or recirculation regions of the flow and its considerable nonuniformity and lead to high thermal and power loads.
Therefore, investigation of such regimes at various flight altitudes and velocities and prediction of the consequences of
their appearance are of great importance.

For high-speed aircraft, the supply of a precompressed oxidizer (air) into the HRE section is actually com-
pletely determined by the flight velocity and the diffuser geometry, which should provide, apart from optimum air in-
take, stability and predictability of functioning. At the entrance to the HRE diffuser, a system of oblique compression
shocks determining the structure of the gas flow in the section is realized. The elaboration of methods of mathematical
simulation enabled by the high level of modern computer engineering has made it possible to investigate spatial high-
enthalpy gas flows with the formation of complex shock-wave structures in the flow. In this case, the study of prob-
lems on the nonuniqueness and hysteresis of obtained numerical solutions and analysis of their adequacy to real
physical processes becomes important.

The investigations of the regular reflection (RR) and Mach reflection (MR) of shock waves (SW) performed
up to the present permit some conclusions about the domains of their existence, including the domains of existence of
a dual solution, in which the formation of stable patterns of both RR and MR is possible. Such domains of solution
dualism arise in a number of subranges of change in the diagnostic variables of the process — the Mach number of
the incoming flow, flow angularity, etc. These two types of shock-wave structures formed by the SW reflection in
steady flows are schematically represented in Fig. 1.

The RR pattern (Fig. 1a) formed in the process of inleakage of a supersonic stream with a Mach number
M0 on two wedges characterized by angles β1 and β2 includes, respectively, two oblique compression shocks (CS) i1
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and i2 formed in the vicinity of the surface of the wedges and incident inside the flow region with slope angles ϕ1
and ϕ2 (hereinafter angles are determined with respect to the direction of the incoming flow) and two reflected CSs
r1 and r2 with slope angles ϕ3 and ϕ4. These CSs intersect at point R. The wake S with a slope angle δ is formed
when the flow is passing through a system of shocks with flow angularities θ1, θ2, θ3, and θ4 on shocks i1, i2, r1,
and r2, respectively. For the stationary pattern, the relations

θ1 = β1 ,   θ2 = β2 ,   θ1 − θ3 = θ2 − θ4 = δ

hold. For symmetric reflection (β1 = β2), naturally, δ = 0.
When a wave structure with MR arises (Fig. 1b), in addition to the incident and reflected CSs i1, i2, r1, and

r2 there appears a central shock m, whose front connects two triple shock intersection points (i1, r1, m) and (i2, r2, m),
and also two wakes S1 and S2 with slope angles δ1 and δ2 arise. For the stationary pattern, the relations

θ1 = β1 ,   θ2 = β2 ,   θ1 − θ3 = δ1 ,   θ2 − θ4 = δ2

hold.
In the case of symmetry (β1 = β2), it is obvious that θ1 = θ2 and δ1 = δ2 = 0.
The flow region is broken down into a number of zones (see Fig. 1) in each of which the flow (uniform in

an idealized formulation) has its own characteristics. Zone 0, the region of the undisturbed flow, is bounded on the
left by any boundary placed in the region of a free supersonic stream (e.g., by a straight line connecting the vertices
of the wedges) and on the right — by the fronts of CSs i1 and i2 (and additionally by the front of the CS m for MR).
Zone 1, the region of the flow developed (clockwise) on the CS i1 along the surface of the upper wedge, is bounded
by the fronts of the CSs i1 and r1, respectively, on the left and on the right. Likewise, zone 2, the region of the flow
developed (counterclockwise) on the CS i2 along the surface of the lower wedge, is bounded by the fronts of the CSs
i2 and r2 on the left and on the right, respectively. Zone 3, the sector of the flow developed (counterclockwise) on the
CS r1, is bounded by its front and the surface of contact discontinuity, which is the boundary of the wake S (for MR
— S1). Zone 4, the sector of the flow developed (clockwise) on the CS r2, is bounded by its front and the surface of
contact discontinuity, which is also the boundary of the wake S (for MR — S2). In the case of RR, zones 3 and 4
have a common boundary (they close directly), and in the case of MR, zones 5 and 6, the flow regions after the CS
m front, are located between them.

Conversions between these two types of reflection are determined by the separation criterion and the Neumann
criterion. Both these criteria (bifurcation points) demarcate three regions in which the existence of only MR, MR and
RR, and only RR is possible. The process of conversion between these types of reflection in varying the parameters
determining the physics of the problem, e.g., the flight velocities and altitudes, can be accompanied by the phenome-
non of hysteresis.

Fig. 1. Patterns of shock-wave structures under interaction of compression
shocks: regular (a) and Mach (b) reflection.
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Studies of the wave structure of these two types (RR and MR) are usually made on the assumption that the
physical properties of the gas flow in passing through the whole system of SWs remain unchanged, i.e., the model of
an ideal polytropic gas with a constant value of the adiabatic exponent (polytrope) γ throughout the flow region is
used (see, e.g., [2]). However, real processes (see [3, 4]), whose investigation is associated with the intensification of
the development of hypersonic aircraft, call for the extension of this physical model. Since the problem schematically
represented in Fig. 1 models the flow at the entrance to the engine air intake, the level of knowledge about the re-
gimes of this flow, the prediction of interconversions between RR and MR, as well as the answer to the question
which of these two types of shock-wave structures is realized in the nonuniqueness domain of the solution and which
factors influence this are of great importance in developing a system for controlling the regime of fuel combustion for
stable functioning of the propulsion unit on the whole.

In the present paper, to investigate the gas- and thermodynamics of the physical processes [3, 4], the effective
adiabatic exponent method (see [5–7]) is used. This method permits simulating a gas flow with regard for its real
properties by varying the adiabatic exponent γ(p, T), which changes throughout the flow field depending on the local
values of pressure p and temperature T.

An illustration of the conclusion that it is necessary to take into account the changes in the thermodynamic
properties of the gas in hypersonic streams with zones of high p and T is Fig. 2, which shows the temperature de-
pendence of the heat ratio cp

 ⁄ cv for air (classical adiabatic exponent γ = cp
 ⁄ cv) in parametric form, where the parame-

ter is pressure with fixed values for each curve. The data were taken from the tables of [8, 9]. The "wavy" behavior
of the curves is due to such physical processes proceeding sequentially with increasing T as excitation of vibrational
degrees of freedom of oxygen molecules and their dissociation, excitation of vibrations in nitrogen molecules and their
dissociation, and excitation of electron shells of atoms and their ionization.

In the present work, to take into account the real properties of the gas, a physicomathematical model of an
SW with various adiabatic exponents before and after the shock front, which is assumed to be an infinitely thin dis-
continuity, is used. The basic gas- and thermodynamic relations on a discontinuity and an analysis of the range of ap-
plicability of the model and its comparison to the model of invariability of the properties of the gas medium in
passing through a CS are given in [10].

Methodology of Investigation. To analyze the wave structures arising from the interaction of incident SWs
i1 and i2 determining the formation of reflected SWs r1 and r2 of different types (RR and MR), it is very convenient
to use the shock polar technique (see also [11]). This technique permits replacing the complicated mathematical analy-
sis of the results of the simultaneous solution of several, according to the number of interacting SWs, nonlinear alge-
braic equations relating the parameter values before and after the front of each CS (with the necessity of selecting
solutions as a consequence of their nonuniqueness) by a graphic method of obtaining a solution. This method makes
the very process of obtaining solutions and their analysis clearer and more logical, and the choice of the required so-
lution in the case of their nonuniqueness presents much smaller difficulties.

By the shock wave polar, or simply the shock polar, is meant the relation relating the flow angularity θ and
the pressure ratio ξ = p+ ⁄ p−, where p+ is the pressure after the CS front and p− before it at a parametric dependence
on the Mach number M− and effective adiabatic exponents γ+ and γ−:

Fig. 2. Temperature dependence of the cp
 ⁄ cv ratio (for air) at a varied pres-

sure: 10−3 (1), 10−2 (2), 10−1 (3), 1 (4), 10 (5), 102 (6), and 103 atm (7).
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f (θ, ξ, M−, γ−, γ+) = 0 . (1)

The graphic curve illustrating dependence (1) strictly called the shock polar (SP) in the plane (x, y) = (θ, ξ)
is a closed curve bounded by values of θmin ≤ θ ≤ θmax and ξmin ≤ ξ ≤ ξmax and mirror-symmetric about the straight
line θs = 0.5(θmin + θmax). A concrete form of (1) is given in [10, 11], where a detailed analysis of the SP with varied
γ+, γ−, and M− has been performed.

In the classical model of invariability of the gas properties, the shock-wave structures of the problem under
consideration (Fig. 1) are determined by the following list of parameters:

F = (β1, β2, M0, γ) . (2)

However, for high-speed gas flows it is necessary to use a physically more real model taking into account the change
in the properties of the gaseous medium during passage of the flow through the CS fronts. In this case, the list of
parameters (2) is extended:

F = (β1, β2, M0, γ0, γ1, γ2, γ3, γ4) , (3)

where γi (i 2 [0, 4]) represents the adiabatic exponents in different flow zones demarcated by the CS fronts (see Fig. 1).
Note that the polars relating the values of γ before and after the passage of the flow through an SW represent

two situations: a decrease or an increase in γ. The first situation, from the point of view of the physics of the process,
is realized more frequently: after a shock additional degrees of freedom (e.g., vibrational ones) of the gas molecules
are excited and the value of γ decreases (decreasing portions of the curves in Fig. 2). The second situation represents
the domain of parameters before and after the shock front situated on the increasing portions of the curves in Fig. 2,
e.g., in the 2400–3300 K temperature range for a pressure of 10−3 atm or in the 3100–4200 K range for a pressure
of 1 atm. On these portions, not the process of excitation of the degrees of freedom of molecules but their dissociation
causing an increase in γ is dominant. A detailed description of the model of the effective adiabatic exponent, the range
of its applicability, the gas-dynamic relation, and its distinction from the classical model are given in [6, 7, 10], and
the influence of γi on the form of the SP has been investigated in [11].

In applied aerodynamic problems on the motion of an arbitrary object in the Earth’s atmosphere (in the pre-
sent paper, this is a problem on the flow in the HRE air intake), as a rule, the following basic parameters are given:
entrance geometry (angles β1 and β2 in Fig. 1) and flight altitude H and velocity V. In so doing, neither the Mach
number M0 nor the values of the effective adiabatic exponent not only in the region of the undisturbed flow but also
in the zone of the incoming undisturbed flow determining the whole shock-wave pattern are known directly. In some
aspect, this is a positive factor, since the list of diagnostic variables (3) is not only considerably shorter:

F = (β1, β2, H, V) , (4)

but its components have a more "transparent" meaning excluding an indefinite interpretation — geometric flow angu-
larities and flight altitude and velocity of the hypersonic aircraft. Variation of the values of parameters (4) may lead
to the formation of different types of shock-wave structures. It is very convenient for analysis to select from the list
of parameters (4) one parameter, e.g., β2, which is declared as a "reference" for analysis. In the space of allowable
values of β2, there exist two special points:

β2
∗
 = β2

∗
 (β1, H, V) ,   β2

∗∗
 = β2

∗∗
 (β1, H, V) . (5)

They are called, respectively, the lower and upper (since β2
∗  < β2

∗∗ ) bifurcation points of the solution and define the fol-
lowing ranges of shock-wave structures:

β2 < β2
∗
 ,   only RR is possible ;

(6)

β2
∗
 ≤ β2 ≤ β2

∗∗
 ,   both RR and MR are possible ;
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β2 > β2
∗∗

 ,   only MR is possible .

Even without knowing the numerical values of β2
∗  and β2

∗∗ , it is possible to determine by the graphs of shock
polars (see Fig. 3) which of the shock-wave structures (6) is realized at a certain set of parameters (4). Let us write
these conditions analogous to (6) in the same sequence but in a different formulation:

1) if r1 and r2 polars intersect inside i1 polar, then MR is impossible ;

2) if r1 and r2 polars inter sect outside i1 polar, then both RR and MR are possible ;

3) if r1 and r2 polars do not intersect, then RR is impossible .

(7)

Generally speaking, not only for β2 but also for each of the other parameters of (4) can the notion of the
lower and upper bifurcation points be introduced: β1

∗ (β2, H, V) and β1
∗∗ (β2, H, V), H∗ (β1, β2, V) and H∗∗ (β1, β2, V),

V∗ (β1, β2, H) and H∗∗ (β1, β2, H). In the general form, bifurcation points are some three-dimensional hypersurfaces in
the four-dimensional space (4):

f
∗
 (β1, β2, H, V) = 0 ,   f

∗∗
 (β1, β2, H, V) = 0 . (8)

Naturally, the forms of writing (5) and (8) are equivalent and for each specific problem their most suitable
form can be used.

Note that apart from determining the boundaries of regimes the shock-polar technique permits obtaining nu-
merical characteristics of the flows (Fig. 1): the relative and absolute values of the pressure and the flow angularity at
the fronts of all CSs and by them the values of all the other gas-dynamic parameters and slope angles of the shock
waves throughout the flow region are determined. Consider sequentially the influence of the basic parameters (entrance

Fig. 3. Polars of the incident shock wave i1 and two reflected shock waves r1
and r2 at fixed values of H = 40 km and V = 4 km/sec and varied wedge an-
gles β1 = β2 = 15o (a), 20o (b), 25o (c), 30o (d), 35o (e), and 40o (f).

655



angle, flight altitude and velocity) on the gas-dynamics of the flow in the diffuser, taking into account the real physi-
cal properties of the air medium in a wide range of change in the temperatures and pressure.

Symmetric Flow. Figure 3 shows the results of the numerical simulation (the computational algorithm is de-
scribed in detail in [11]) of the problem at fixed values of the flight altitude H = 40 km and velocity V = 4 km/sec
in the Earth’s atmosphere. The angles of entrance to the HRE air intake were assumed to be equal (β1 = β2 = β) and
had values of 15, 20, 25, 30, 35, and 40o. According to (7), it may be concluded at once that at β = 15o only the
regular and at β = 40o only the Mach shock-wave structure of the flow is possible. In the other variants given, both
types of shock-wave structures are possible. At such H and V the values of the lower and upper bifurcation points (5)
are approximately equal to β∗  C 19.9o and β∗ ∗  C 39.8o, respectively. In the domain of solution dualism, the r1 and r2
polars "split" into Mach r1M, r2M and regular r1R and r2R polars (not marked in the figure). The degree of their split-
ting and the order of embedment in one another depend on which portion (see Fig. 2) of the γ(p, T) curve — increas-
ing or decreasing — the shock-wave transition occurs (for details, see [11]). Note that the question of solution
selection requires a special study and is beyond the scope of the present work.

The most important parameters in different flow zones — the adiabatic exponent γ, the local Mach number
M, the pressure p, and the temperature T for angles β = 15, 30, and 40o — are given in Table 1 and correspond to
the variants shown in Fig. 3a, d, f. The sequence of zones in the tables is given for the convenience of comparing the
nearby numbers. The shock of parameters on the incident shock wave i1 is a jump from the values in zone 0 to the
values in zone 1; the shock on reflected SWs is a jump from the values in zone 1 to the values in zone 3 (for r1)
and from the values in zone 2 to the values in zone 4 (for r2). In the case of a symmetric problem, the numbers in
columns 1 and 2, 3 and 4 coincide; these values were saved for unification of information presented in the other tables
for asymmetric problems.

Notice the following features. On the shock i1 there is a marked change in the properties of the gaseous me-
dium: the adiabatic exponent γ changes from 1.40 to 1.33 (for β = 15o), 1.23 (for β = 30o), and 1.20 (for β = 40o).
The decrease in γ is due to the significant increase in the excitation of vibrational degrees of freedom in the oxygen
O2 molecules at β = 15o and even in the nitrogen N2 molecules at β = 40o, when considerable values of temperatures
are reached, about 5840 K at a pressure of 0.3 atm (the statistical pressure in the incoming flow at this altitude is
0.0028 atm). The passage of the stream through the reflected, less intensive shock r1 changes the properties of the
gaseous medium to a lesser extent, and differently, depending on β. At β = 15o the adiabatic exponent decreases, as
on i1, but insignificantly (excitation of O2 molecules is going on), from 1.33 to 1.31. At β = 30o γ retains its value
of 1.23, and at β = 40o there is an increase in γ from 1.20 to 1.22, which is now due to the process of N2 molecule
dissociation rather than vibration excitation.

TABLE 1. Flow Parameters at H = 40 km, V = 4 km/sec and Varied Values of β1 = β2 = β

β Parameters
Zones

0 1 3 2 4

15o

γ 1.40 1.33 1.31 1.33 1.31

M 12.61 6.57 7.77 6.57 7.77

p 0.00283 0.0548 0.0548 0.0548 0.0548

T 250 1145 1325 1145 1325

30o

γ 1.40 1.23 1.23 1.23 1.23

M 12.61 4.18 3.44 4.18 3.44

p 0.00283 0.181 0.567 0.181 0.567

T 250 3600 4600 3600 4600

40o

γ 1.40 1.20 1.22 1.20 1.22

M 12.61 3.01 2.51 3.01 2.51

p 0.00283 0.295 0.572 0.295 0.572

T 250 5840 6390 5840 6390
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Notice also the fact associated with the solution nonuniqueness at β = 30o. In Table 1, in zone 3 (and 4) val-
ues corresponding to the Mach reflection are given. At regular reflection the following values reach the steady state:
γ = 1.22, M = 2.44, p = 1.47, and T = 6530, which differ considerably, except for γ, from the "Mach" values.

In visual analysis, the difference between the MR and RR parameters is determined by the "remoteness" of
the polar intersection points (i1 × r1) and (i1 × r2). In particular, at β2 = β2

∗  (Fig. 3b) these parameters coincide, and at
β2 = β2

∗∗  (Fig. 3f) the difference is maximum. Thus, the question on exactly what solution — Mach or regular — be-
comes stationary in the nonuniqueness domain is of great importance for the HRE functioning.

Asymmetric Flow. Wide angle β1. Consider the influence on the flow structure of the angle β2 variation with
all other parameters of list (4) being fixed: H = 40 km, V = km/sec, β1 = 40o. The systems of polars corresponding
to the values of β2 = 10, 15, 20, 25, 30, and 35o are given in Fig. 4. The choice of β1 and β2 values is due to the
following facts. The angle of 40o is close to the limit angle at which a compression shock attached to the vertex of a
wedge can exist and the formation of shock-wave structures shown in Fig. 1 is possible.

The small angle of 10o always provides the regular type of reflection. Thus, practically all interesting struc-
tures of the flow are formed by angles lying in this range. This permits, in analyzing the shock polars (see Fig. 4),
approximate determination of the flow structure at other values of β1 and β2, "moving mentally" the r1 and r2 polars
to the reference points of the polar i1 corresponding to these values. It is clear that such a visual approximation will
not ensure the obtaining of "exact" numbers but can give quickly, without numerical calculation, a general useful idea
about the change in the shock-wave structure of the flow at varied β1 and β2.

Notice the splitting of incident SW polars i1 and i2 due to the fact that β1 ≠ β2. The polar swing depends on
the value of γ after the incident CS front: the smaller this value, the larger the width and height of the polar (a de-
tailed study was made in [10, 11]). This value is determined by the whole list (4). In our case, the i2 polar is "em-
bedded" in the i1 polar at all values of β2 (see the values of γ in Table 2). The nature of the splitting of the r1 and
r2 polars is described above.

Analyzing Fig. 4, it may be concluded that at the given values of β1, H, and V throughout the range of vari-
ation of β2 the domain of solution nonuniqueness takes place: both MR and RR are possible. In the practice of HRE
development this makes such a part of the parameter field very unpleasant in developing control systems, since exact

Fig. 4. Polars of two incident shock waves i1 and i2 and two reflected shock
waves r1 and r2 at fixed values of H = 40 km and V = 4 km/sec, β1 = 40o and
varied values of β2 = 10o (a), 15o (b), 20o (c), 25o (d), 30o (e), and 35o (f).
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prediction of which of the regimes will be realized seems to be unjustifiably optimistic because of the influence on
this process of a large number of factors, in particular, the previous history of the flow (for more details, see [13,
14]). The boundaries of the solution dualism domain can be roughly estimated on the basis of visual analysis. Taking,
for example, Fig. 4b and "moving mentally" the r1 polar to the left (so that the central point of r1 always rests on the
i1 polar) and simultaneously extending it, which corresponds to a decrease in β1, we will follow the "movement" of
the intersection point of r1 and r2. The moment this point "enters" the i polar (intersection point of three polars i1,
r1, and r2 at a time) is the boundary of the domain of existence of the Mach type of reflection. This is the lower bi-
furcation point of the solution β1

∗ (C18o). Then, at β1 < β1
∗  the existence of only one type of SW-structure — regular

reflection — is possible.

TABLE 2. Flow Parameters at H = 40 km, V = 4 km/sec, β1 = 40o and Varied β2

β2 Parameters
Zones

0 1 3 2 4

10o

γ 1.40 1.20 1.22 1.37 1.19

M 12.6 3.01 2.51 7.99 5.03

p 0.00283 0.295 0.572 0.0281 0.532

T 250 5830 6390 682 3290

20o

γ 1.40 1.20 1.22 1.29 1.21

M 12.6 3.01 2.51 5.58 4.64

p 0.00283 0.295 0.572 0.0899 0.553

T 250 5830 6390 1800 3460

30o

γ 1.40 1.20 1.22 1.23 1.23

M 12.6 3.01 2.51 4.18 3.44

p 0.00283 0.295 0.572 0.181 0.567

T 250 5830 6390 3600 4600

Fig. 5. Polars of two incident shock waves i1 and i2 and two reflected waves
r1 and r2 at fixed values of H = 40 km and V = 4 km/sec, β1 = 15o and var-
ied values of β2 = 20o (a), 25o (b), 30o (c), 35o (d), 40o (e), and 45o (f).
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Likewise, by visual analysis, with a low degree of accuracy, of course, we can also determine the upper bi-
furcation point β1

∗ ∗ . For example, from Fig. 4b it is seen that this point at a fixed value of β2 = 15o cannot exist be-
cause the motion of the ri polar on the i1 polar to the right is limited by the value of θmax C 55o. In this case, the
intersection point of the r1 and r2 polars will always exist, i.e., the possibility of RR will always remain together with
the possibility of existence of MR. RR can only be forbidden by increasing β2, i.e., only by shifting the r2 polar to
the left.

Some of the numerical results of computer simulation of this type of problem are presented in Table 2 for
β2 = 10, 20, and 30o. The structure of the table was described in the previous section. Note that the question of le-
gitimacy of using the model of a continuum (accuracy of results obtained) at large altitudes is rather debatable, but, in
any case, these data are very useful, in particular, for analyzing the dynamics of change in the SW-structure and gas-
dynamic parameters in various flow zones at varied flight altitudes. Moreover, in [12] the comparison of the data ob-
tained as a result of numerical experiments in solving the Euler (Navier–Stokes) and Boltzmann equations showed a
good correlation up to the values of H C 120 km.

Let us analyze the numerical values given in Table 2. Here the variant of β2 < β1 is presented (Table 3 gives
data, on the contrary, for β2 > β1). Since β1 = const in this case, the values in columns 1 and 3 (and especially in
column 0) are equal for one and the same type of reflection (MR and RR), but for unification of the representation
of the results the structure of the tables is not changed because of this, since at a general variation of the parameters
of list (4) in all positions of the table the numbers are substantially different.

The adiabatic exponent γ, which is equal to 1.40 in the undisturbed flow zone, reflects, on the average, the
physicochemical processes proceeding as the gas passes through the compression shocks (excitation of vibrations of
atoms in molecules, their dissociation and ionization at high temperatures). On incident CSs i1 and i2 the value of γ
decreases.

For instance, in zone 1 γ1 = 1.20, and in zone 2, naturally, it depends on the varied value of β2: at β2 = 10,
20, and 30o γ2 = 1.37, 1.29, and 1.23, respectively, which reflects the intensification of the vibrational process in the
O2 molecules. On reflected CSs r1 and r2 as less intense compared to the incident ones, γ changes to a lesser extent,
i.e., the change in the properties of the gaseous medium is smaller.

At the exit from the system of shocks the flow becomes very nonuniform, especially at a wide difference be-
tween β1 and β2. For instance, at β2 = 10o in the adjacent zones 3 and 4 the following values of temperatures are
attained: T3 = 6390 K and T4 = 3290 K. The pressures differ less noticeably: p3 = 0.572 atm and p4 = 0.532 atm.
Note that these data are given for the MR type. If the RR type is realized, then considerably larger values of these
quantities will take place: T3 = 6860 K and T4 = 4590 K at p3 = p4 = 0.879 atm. It will be recalled that at RR the
pressures in zones 3 and 4 are always the same and these zones are separated by a tangential discontinuity, and at MR
between zones 3 and 4 metastable zones 5 and 6 of the flow after the central shock m are situated (see Fig. 1b).

TABLE 3. Flow Parameters at H = 40 km, V = 4 km/sec, β1 = 15o and Varied β2

β2 Parameters
Zones

0 1 3 2 4

20o

γ 1.40 1.33 1.18 1.29 1.19

M 12.6 6.57 5.77 5.58 5.17

p 0.00283 0.0548 0.446 0.0899 0.446

T 250 1150 2910 1800 3230

25o

γ 1.40 1.33 1.19 1.17 1.21

M 12.6 6.57 5.20 6.10 4.45

p 0.00283 0.0548 0.542 0.127 0.582

T 250 1150 3210 2800 3550

30o

γ 1.40 1.33 1.19 1.23 1.23

M 12.6 6.57 5.20 4.18 3.44

p 0.00283 0.0548 0.542 0.181 0.567

T 250 1150 3210 3600 4600
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Thus, to optimize the form of entrance to the diffuser by a number of indices (maximum of the statistical
pressure or flow at the exit), it is necessary first to answer the fundamental question which type of shock-wave struc-
ture is realized. The elaborated special computational algorithm for determining the bifurcation points in the parametric
space (4) has demonstrated a high efficiency of functioning in a wide range of diagnostic variables. It should be noted,
however, that the process of search for extrema in a four-dimensional space with their nonmonotonic dependence on
some of the "coordinates" of (4) requires much computer time. Calculations can be promoted by organizing a parallel
count on multiprocessor systems (for parallelizing of solutions of gas-dynamics problems, see [15, 16]).

Small angle β1. We now turn to the analysis of the influence on the flow structure of the variation of β2 at
a fixed flight altitude H = 40 km and velocity V = 4 km/sec with a small value of β1 = 15o. The systems of polars
corresponding to the values of β2 = 20, 25, 30, 35, 40, and 45o are given in Fig. 5. The reasons for choosing these
angles are the same as in the previous section. Only note that the results for small β = 0.5o and so on are not ana-
lyzed here, since the central counterpoint of this work is the investigation of the range of nonuniqueness of solutions.

The polar patterns are analogous, in general, to those considered earlier. There are two split polars of i1 and
i2 shocks incident inside the region from wedge angles β1 and β2. For these parameters, the i1 polar is embedded in i2.

The polars of reflected shocks r1 and r2 also split into a Mach one and a regular one. This occurs in the case
of dualism of solutions, where the existence of both MR and RR is possible, which takes place almost throughout the
range of the investigated β2, except for the variant with β2 = 20o, where MR is impossible. Note that the splitting of
r1 polars is practically visually imperceptible (and can only be analyzed by numerical data), and the splitting of r2 po-
lars is maximum at β2 = 45o (Fig. 5f).

Table 3 gives some of the numerical data for flows with β2 = 20, 25, and 30o corresponding to Fig. 5a, c,
e. The i1 and i2 CSs incident inside the flow have a substantially different effect on the gaseous medium. The adi-
abatic exponent varies from the value of 1.40 in the incoming flow for angles β2 = 20, 25, and 30o on the i1 CS (in
zone 1), respectively, to equal values of "only" 1.33, and on the i2 CS (in zone 2) to the values of 1.29, 1.17, and
1.23. Notice the value of γ = 1.17. While the very fact that the shock action on the medium of the shock attached to
the wedge β2 leads to a greater change in γ than the action of the shock from the wedge β2 = 15o is rather expected,
since the intensity of the i1 CS is lower than that of the i2 CS, the numerical result γ = 1.17 is absolutely unpre-

Fig. 5. Polars of two incident shock waves i1 and i2 and two reflected waves
r1 and r2 at fixed values of H = 40 km and V = 4 km/sec, β1 = 15o and var-
ied values of β2 = 20o (a), 25o (b), 30o (c), 35o (d), 40o (e), and 45o (f).
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dictable (nonmonotonic in β2 and too drastic a change in the properties of the medium). In so doing, the temperature
increases in the i1 CS (in zone 1) from the value in the incoming flow T0 = 250 K to T1 = 1150 K and in the i2 CS
(in zone 2) to T2 = 1800 K (for β2 = 20o), T2 = 2800 K (for β2 = 25o), and T2 = 3600 K (for β2 = 30o). In the
region of temperatures T C 2800 K, intensive excitation of vibrations in the O2 molecules occurs, and in the region of
temperatures T C 3600 K the oxygen is almost completely dissociated and the deviation of γ from its value for the dia-
tomic gas of 7/5 provides only a vibration excitation of the nitrogen N2 molecules.

After the passage of the system of r1 and r2 CSs in zones 3 and 4 the temperatures have the values of T3 =
3210 K (3810 K) and T4 = 4600 K (5280 K) for the variant with β2 = 30o. Here the values for both the Mach and
regular (bracketed) types of reflection are given.

A much higher inhomogeneity of the flow temperature at the outlet takes place for a large angle (not given
in Table 3) with a value of β2 = 45o (here the existence of both MR and RR is also possible): T3 = 3210 K (5790
K) and T4 = 6900 (8750 K). There is also a considerable difference between the adiabatic exponents: γ3 = 1.19 (1.19),
γ4 = 1.24 (1.25) and the local Mach numbers: M3 = 5.20 (3.26) and M4 = 1.89 (1.17). It will be recalled that the
Mach number of the incoming flow M0 = 12.6. Note that the pressure in these zones does not differ very much: p3
= 0.542 atm (1.27 atm) and p4 = 0.563 atm (1.27 atm).

On the whole, the graphs of the shock polars and the numerical data in the tables complementing them pro-
vide very interesting information about the shock-wave structures and values of the gas-dynamic parameters in differ-
ent flow zones.

CONCLUSIONS

Direct numerical simulation of flows on the basis, in particular, of Euler equations in the domain of solution
nonuniqueness poses its own, specific problems. Since the computational algorithm can obtain only one specific solu-
tion, the following questions arise: what solution is this (MR or RR) and what factors influence the obtaining of ex-
actly this solution. For example, what are the basins of attraction of the solution: when various input data are used, if
establishment methods are used; when other algorithmic parameters — dimensions and configurations of the calculation
mesh, etc. are varied. The question on the character of the computational process in the vicinity of the bifurcation
points of the solution is interesting: are there spontaneous transitions from one branch of the solution to the other, es-
pecially in attempting to obtain in the end one type of solution, starting from the other type? Or does the algorithm
"determine independently" only one type of solution, completely ignoring the other type?

Let us emphasize that the main "danger" of direct numerical simulation of complex problems of gas dynamics
in an area that has been little studied or not studied at all, where there is no support by either analytical relations or
experimental data serving as a certain reference point, is the probability of obtaining some "proper" solution (such
questions are described in detail in [14, 17]). This especially holds for the recently developed large number of algo-
rithms of the so-called "increased" order of accuracy and their application for calculating problems with a complicated
shock-wave configuration. For example, in [18, 19] it has been shown that all algorithms used yielded different (some
of them radically different) solutions to one and the same problem.

Therefore, theoretical studies revealing special domains of behavior of solutions are becoming again a very
important element in the advancement of numerical simulation to the region of hypersonic real gas flows.

This work was supported by the Russian Basic Research Foundation (project No. 02-01-00097).

NOTATION

cp, heat capacity at a constant pressure; cv, heat capacity at a constant volume; H, flight altitude, km; i, inci-
dent shock; m, central shock; M, Mach number; p, pressure, atm; r, reflected shock; S, wake; T, temperature, K; V,
flight velocity, km/sec; β, wedge angle; γ, adiabatic exponent; δ, wake angle; ϕ, shock slope; ξ, pressure ratio after
and before a shock; θ, flow angularity. Subscripts: 0, 1, 2, 3, 4, flow zone numbers; + (plus), parameters after the
shock front; − (minus), parameters before the shock front; min, minimum value; max, maximum value; s, mean value.
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